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Specific heat of theszé Heisenberg model on the kagome lattice: High-temperature series
expansion analysis
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We compute specific heat of the antiferromagnetic éal-rheisenberg model on the kagome lattice. We use
a recently introduced technique to analyze high-temperature series expansion based on the knowledge of
high-temperature series expansions, the total entropy of the system and the low-temperature expected behavior
of the specific heat, as well as the ground-state energy. In the case of the kagome-lattice antiferromagnet, this
method predicts a low-temperature peakial<0.1.
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I. INTRODUCTION proach, this methdd takes advantage of additional informa-
We consider the nearest-neighbor Heisenberg model ofion on the system: the two sum rules on the energy and on
the kagome lattice: the entropy are_exact_ly satisfied. In many simple systems
Lo (one- and two-dimensional ferro- or antiferromaghetbis
H=2>S ‘S. (1)  technique allows one to compute accurately the specific heat
(M) down to zero temperatufé which is not the case if one does

. , . a direct Padé analysis of the series. For the present kagome
Because of its unconventional properties, the éakagome model we show that this method provides rich semiguantita-
antiferromagnetkAF) has been subject to an intense aCtiv_tive information on the specific hpeat curve, althou qh a full
ity these last years. All studies agree that this frustrated two- P ' 9

di . . convergence down to zero temperature cannot be achieved.
imensional magnet has no long-ranged magnetic order at
zero temperatur&?® Exact diagonalization studies have es-
tab_lished that th_e low-energy spectrum of the kagome-latti_ce Il. DIRECT HIGH-TEMPERATURE EXPANSION
Heisenberg antiferromagnet has a large number of spin- OF THE SPECIFIC HEAT
singlet states before the first spin 1 excited st&t&mong
the different theories developed to explain this unconven- We reproduce here the first attempt by Elstner and
tional spectrum, short-range resonating valence-d&uB) Young'® to compute the specific heat from its high-
pictures have been propos€d!® temperature expansion alone. We use Padé approximants to
The high-temperaturéHT) expansion of the specific heat extrapolate the series. We impose the specific heat to vanish
as been computed up to orderTtf by Elstner and Yound®  at low temperature &B, T2, or T2. At orders 9 to 17, only six
We have checked and extended this series to ord&r'L/ such approximants do not develop poles or zeros in the in-
The additional term for the specific heat per site is given byterval T € ]0,%°] (Fig. 1). One should notice at this point that
cv(T)=§,82+---+1 845 286 680 253/366 912 0BY. Elst- the remaining Padé approximants agree reasonably well
ner and Young analyzed the series through conventional Padg®wn to zero temperature. This is usually not the case in a
approximants with the additional constraint that the specifigwo-dimensional antiferromagnet where even the position of
heat must vanish &=0. At the highest orders, they found a the peak(T=1) can hardly be obtained by the use of direct
specific heat curve with a single maximum arodrel.3 but ~ Padé approximants to the series for the specific Hefatom
with a large entropy deficit of about 40%;c,(T)/TdT  this point of view, the HT series expansion of the kagome
=0.6In2). They concluded the existence of a low- model seems to have a faster convergence than models such
temperature structure corresponding to an entropy of abo@s the triangular-lattice antiferromagnet.
40% of In 2 and claimed that this low-energy structure could By integration of these approximants, we evaluate the
not be accessed from the high-temperature expansion of trgfound-state energgy=/,c,(T)dT and the ground-state en-
specific heat. They argued that even though ¢hassical  tropy s,=log(2) - [5¢c,(T)dT. These values are indicated in
kagome antiferromagnet has a nonvanishing ground-state eRig. 1. The ground-state energy is about —0.845, only slightly
tropy, quantum fluctuations in the spinmodel are expected higher(0.02 than estimations obtained from exact diagonal-
to lift this degeneracy. izations. The entropy deficit is very large: 0[30% of
In this paper, we revisit the question of the specific heatog(2)]. Elstner and Yount§ argued that a low-temperature
with the help of a new method to analyze high-temperaturgpeak should be present in the specific heat in order to com-
series data. Compared to the usual Padé approximant apensate the deficit of 40% of 162).18 However, this low-
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FIG. 1. (Color online Specific heat obtained from Padé ap- — & & [T & [ %
proximants to the high-temperature seriescgfT). Only approxi-
mations of degreepu,u+1], ((u,u+2] and[u,u+3]) are consid-
ered. They vanish at zero temperaturd d3? and T%). The only six
such approximants from order 9 to 17 which are positive on the
positive real axis are shown. The ground-state energy peggsited
entropy s obtained by integrating these Padé approximations is
indicated.

—— Order B

Order p16
e Order B15
—— Order g™
temperature peak should “contain” almost no enei2f),
which means that such peak would have to occur at very low
temperatures. In order to estimate this temperature, one can
add a é-function peak to the curves of Fig. 1 in order to
recover the correct energy and entropy variations. This con-
strains both the locatioftemperaturel;) and the weight of
the & peak. By averaging over the different curves of Fig. 1
one findsT;=0.05(T;=0.08 for a ground-state energs
=-0.865 (e,=-0.879. These estimates are in agreement
with the conclusions of the more elaborate treatment de-
scribed below.

iy === Order g~
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FIG. 2. (Color online Left: Series expansion fas(e) (entropy
per sitg as a function of the energy per sieThe result of the bare
series are displayed for orders frg8a! to 7. The dashed vertical
lines indicate uppete=—-0.84267 and lower(e=-0.909952 rigor-
ous bounds on the ground-state energy in the thermodynamic limit
(Ref. 19 Right: Same data as on the left panel but plotted as a
function of temperatur&@=1/s’(e). For each curve the lowest tem-

In this section we briefly summarize the method we use tgerature corresponds te=-0.909952(lower bound. The black
compute the specific heat. More details can be found in Refsegment corresponds &-0.84267(upper boung
17. The specific heat, and the temperatur& can be ob-
tained from the entropg as a function of the energyusing
basic thermodynamic relations:

[lI. ENTROPY METHOD

(the ground-state energy lies between the dashed vertical
lines in Fig. 3. These results are consistent with a direct
analysis of the series fay,(T) (Fig. 1). In addition, it appears
that the “true”s(e) must be bent downward below the curves

T(e)=1/s'(e), (2 of the truncated serieshown in Fig. 2 betweeng, and

~=0.75 in order to reack=0 ate=g,. Due to Eq.(3), this

: s'(e)? almost certainly implies a low-energiand therefore low-
c,(€)=- 9@ ) temperaturgpeakin c,(T). This paper makes this idea more

_ ~ precise by computing the specific heat obtained by forcing
From Eq.(3) one can convett a high-temperature series the entropy to vanish a=e,.

for ¢,(T— ) into a series fos(e—0) [e=0 atT= for the The advantage of working aste) rather tharc,(T) is that
Hamiltonian of Eq.(1)]. The truncated series are plotted in a two-point Padé interpolation can be used to set the ground-
Fig. 2. Using Eq(2), the entropy can be plotted as a function state energy and the total entropy of the system. However,
of temperaturdright of Fig. 2. A good convergence is ob- s(e) is singular ate=g, [sinceT=1/s'(e) —0 whene— gg].
served down to relatively low energi¢e~—0.79 but the  For this reason one cannot directly approximate) by a
corresponding entropy remains very lafgeore than 60% of rational fraction(Padé approximaitIf we assume that the
In(2)], although the ground-state energy is not much lowerspecific-heat behaves as
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c, = (T/cp)“ (4) qualitative behavior of the specific heat wh&n-0 is un-
_ _ known, although a~T? scenario has been proposd.
at low temperaturéc, has the dimension of an enelgnd  owever, one of the striking facts about the model is the

s(ep)=0, s(€) behaves as unusually high density of statesnmediately abovethe
(a+ 1)01/(a+1)<e_eo>a/(a+l) ground-staté® From this it is natural to expect gapless el-

5) ementary excitations. If we assume quasiparticles with a dis-
persion relatione,~ k> we get a specific heat, ~ T with
The quantity a=D/vy in space dimensio®. The (many body density of
Lt states isp(Eg+W) ~exg N(W/N)#@*D] whereN is the sys-
Gle) = s(e) (6) tem size[consequence of Ed5) with e-e;=W/N]. For an
e-e energyW of order one above the ground state, a density of

is th inaul _ d b . db statesp~ 1.15" was observed in exact spectra upNe 36
Is then nonsingular at=€, and can be approximated by a ;o510 if this indeed holds up to the thermodynamic limit, it

Padé fornﬁo The geries fos(e— 0) must thergfore be_trans- would imply @=0 (y==) and an extensive entropy at zero
formed into a series fo@(e—>0) before Padé approximants temperature. This is unlikely in the present médélut this
can then be computed in the usual way. In what follows all.gg it points to a rather flat dispersion relation of the excita-
the Padé approximants will be approximations to this f“nc“tions, probably withy> 1. In the following we will consider
tion G(e). If no finite-temperature phase transition is €X-he two caseg=1 (=2) and y=2 (a=1).23

pected, all approximants whe€e) has a pole or a zero, or

where s'(e) or s’(e) vanishes somewhere in the interval

leg, Of must be discarded. The remaining ones are called. Ground-state energy and convergence of the different Padé
“physical” for brevity. approximants

s(e— gp) = .
0

In principle, the method above requires the knowledge of
the ground-state energsy. If the value ofe, is exact we

Unlike some simpler magnets where the nature of theexpect the procedure to converge to the exadt the num-
ground-state and elementary excitations is kndvihe  ber of known terms in the HT series increases to infinity.

A. Low-temperature behavior of c,(T)
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FIG. 4. (Color online Specific
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This is in agreement with our experience on solvable modelsulations as well as rigorous bounds eywill be discussed
(such as the spigXY chain, for instanc€) where the full  in a separate pap&th?®

series as well agy are known exactly. Inversely, wrong val- ~ The specific heat curve can be rather sensitive to the
ues ofey cannot lead to any convergence as the limitigg  choice ofe,. Sinceg, is not exactly known, it is important to
would have to satisfy the HT series at all orders but wouldperform scans in order to see how the specific-heat curve
have a different energy sum rule. As a consequence, \efien depends om,. We observe that, for some choicegfmany
differs from the true ground-state energy, the physical apPadé approximants at a given order give almost the same
proximants gets fewefand/or more scatter¢avhen the or-  specific heat curve whereas some other choiog, ¢éads to

der of expansion gets larger. Of course, the smaller the errglome significant scattering in the specific heat curves. This
on &, the longer series is needed to observe this departurgan conveniently be seen, for instance, by looking at the
from convergence. From this we assume that the existence ghlue of the different Padé approximants exte, Since

a larger number of physical approximant isindicationthat  G(e,) andc, [defined by Eq(4)] are simply related by
€, (and a) is closer to the exact value. However, because a

limited number of terms of the series are known, this only a+l
provides qualitative information and does not allow one to Gley) = coattie’ ()
determine the energy completely.

From exact diagonalizations on systems with up to 36wve plotc, [which has a direct physical meaning in terms of
sites, e, was evaluated by Waldtmanet all® to be e, ¢,(T—0)]in Fig. 3 as a function o0&, for all physical Padé
=-0.865+0.015see also Refs. 26 and R¥ariational cal- approximants at ordeg® and g’ [both for c,(T)~T and
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~T?2 at low temperaturk It turns out that, is representative c¢,~T andc,~ T? are shown in Fig. 4. Although some un-
of the full specific-heat curve in the sense that if two Padé&ertainties remain concerning the ground-state energy of the
approximants give “close” values ¢f (say a relative differ- model as well as the low-temperature behavior of the specific
ence less than 18), their corresponding specific-heat curves heat, the results are relatively well converged downTto
are similar(typical relative difference of 16) for all tem-  =0.7 and the location of the high temperature peak is almost
peratures This low-temperature coefficient is therefore a independent from the unknowris, and @) and is in agree-
useful quantity to monitor how the,(T) result depends ment with previous studi€s®1621In addition, all the sce-
on the choice of the degree of the Padé approxirffaht.  narios we investigated gave rise to a low-temperature peak
all cases the “optimal” energy region is aroung)  (or a shoulderin the specific heat af=0.02-0.1.
=-0.88+0.022! We also observe a gradual shift of the op- We also looked at the order dependence of the specific
timal region to higher energies as the order of the series ibeat curves. For a given value of the ground-state energy
increased. We analyzed this effect and performed several esome approximants give similar curves @(T) while some
trapolations to the infinite-order limi{data not shown It is others are “isolated.” The later ones can be recognized as
not clear, however, that this indirect method to determine thésolated curves in Fig. 3. According to our experieriagith
ground-state energy is more accurate than the other availabllbis method, those isolated approximants do not reflect the
estimates? convergence to the true function. We obtained the results of
_ Fig. 5 by keeping only the approximants whose value 0§
C. Low temperature peak in ¢,(T) at less than %1073 from the ¢ of another approximant.

The curves corresponding to all physical approximants aThis selection was repeated from ordgts to 87 for the six

order B for e,=-0.865,e,=—0.88, ande,=-0.89, and for combinations of ground-state energies and low-temperature
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behaviors used before. As one can see, the low-temperature I[V. CONCLUSIONS
structure appears to be a robust feature, although a conver-
gence of the full curve is not reached for<0.6. Still, a By means of a detailed high-temperature series analysis

better convergence as a function of the order of the seriege provided quantitative estimates for the specific heat curve

(and a larger number of physical Padé approximaisteb-  of the spin-% Heisenberg antiferromagnet on the kagome lat-

tained when the ground-state energy is I¢@y=-0.89 or tice. Those results show a low-temperature peak in the spe-

e,=-0.88. This suggests that the actual valueegfimay be cific heat of the model fol <0.1, although its precise loca-

lower than —0.865, althougk,=-0.89 is probably too low tion cannot be determined due to uncertainties on the

(compared to the available estim&t&%26:25. ground-state energy. The corresponding degrees of freedom
For N=18 spins, exact diagonalizatidfisgave a low- are also responsible for the large density of singlet states

temperature peak of the specific heat Tat=0.2 andc, observed in exact diagonalization studies but their nature, as

=0.17. A hybrid methott based on exact diagonalizations well as the nature of the ground state itself, remains to be

and high-temperature series expansion gave a peak at explained.

=0.2 andc,=0.17 for N=36 (see also Ref. 6 Quantum

Monte Carlo simulations foN=72 spin§ indicated that a

peak may exist below = 0.3 for this system. Those results ACKNOWLEDGMENT
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exactly diagonalizing a 24-site cluster with open boundary con°The physical meaning of this observation is that if two specific
ditions. Farnellet al. used a coupled cluster method and pre- heat curves havé) the high-temperature expansion up to some
dictedey=-0.8504(Ref. 26. They recently improved their cal- relatively high order(ii) the same ground-state energyi,) the
culation (Ref. 27 and obtainede;=-0.86208 by fitting their same entropy, anglv) the samec, ~ (T/cp)® limit at low tem-
nth-order results by I corrections. We observed that their perature they must be very “similar.”
bare data are better described byrEbrrections. In that case a 3'For lower energies the curves gets closer but the number of physi-
fit gives e;=-0.875. cal Padé approximants actually gets smaller and smaller, as can
29, Pierre (unpublishedl be seen in the lower panels of Fig. 3.
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